6. Sequential controls 
The determination of mathematical models connected to the passage to the limit. The Cauchy principle is the practical method of proving of the convergence for the real numbers sequence. However, fundamental sequences may diverge for the incomplete spaces. These spaces can be extended by completion technique. Then the fundamental sequence becomes convergent on the completion. Besides, any element of the extended set can be obtained as a limit of the sequence of elements of the original set. The completion procedure, which is the basis of the sequential method, was tested on an incomplete space of rational numbers. Depending on the choice of the metric on this set, real or p-adic numbers were obtained.
In this caption we consider sequential objects in an area that does not seem to have any relation to the problems we are discussing. We are talking about the theory of extremum. We consider, in particular, the problem of optimal control, which has no solution in the natural sense. There is no such admissible control on which the lower bound of the minimized functional is realized here. However, this lower bound exists, and therefore there is a sequence of controls such that the corresponding values ​​of the functional tends to the lower bound of this functional. These sequences can be interpreted as in some sense fundamental. However, the absence of optimal control is a sign of its divergence. Therefore, one can try to analyze such problems by expanding the initial set of admissible controls with using the completion procedure, i.e. on the basis of the sequential method. In this case, the classes in a certain sense of equivalent sequences of usual controls are interpreted in a natural way as sequential controls.

It is important that each sequential control can be approximated by usual controls. The given functional extends from the set of admissible controls to the set of sequential controls. As a result, we obtain an extended optimal control problem, which is certainly solvable. Moreover, the minimum of the extended functional on the set of sequential controls is equal to the lower bound of the original functional on a given set of admissible controls. Therefore, we can find an approximate solution of the initial problem under conditions when its exact solution does not exist by the analysis of the extended problem. In addition, we consider the non-uniqueness of the optimal control and the well posedness of optimization problems in the sense of Tikhonov, which clarify the structure of sequentially optimal controls.

6.1. Optimal control problems
Optimal control problems often arise in different applications. The object of investigation here is a certain system that can be in different states. Changing a certain factor called the control, we can get this or that state of the system. Note that the possibilities for varying the control are, as a rule, limited. The optimal control problem is to choose a control within the given constraints such that to order to achieve a goal set.

The problem statement of optimization includes, at first, a mathematical model of the system. Using this model, one can determine a state system for each choosing of the control. The mathematical model of the system can be described for the general case by an operator equation
                                                                          A(u,x) = 0,                                                               (6.1) 

which is called the state equation. Here u is the control, x is the state function of the system, and A is an operator defined on the set of control-state pairs. The given constraints can be characterized by the inclusion

 (u,x)(U,

where U is a given set. One have often the constraints for the control only. We have the inclusion u(U for this case; and U is called the set of admissible controls. Finally, a functional I on the set of control-state pairs is given. This is called the optimality criterion.
Definition 6.1. The optimal control problem consists in finding a pair that minimizes the functional I on the set U.
We can have the question, why do we would like to consider the problems of finding an extremum? Indeed, this direction is quite far from the main subject of our research. This is the problem of justifying the determination of mathematical physics problems. Is it only the case that here we will encounter another sequential object – sequential controls? However, there exists a deep connection between the theories of the equations and the extremum problems. In particular, the necessary condition of extremum for the function (a minimization object) at some point is the equality to zero of the function derivative at this point. This equality, called the stationary condition, is an algebraic equation with respect to the number suspected of an extremum. The necessary condition of extremum for the function of many variables is the equality to zero of the gradient of this function. This is the system of algebraic equations. The classic Lagrange problem of the calculus of variations is related to the minimization of the integral functional, depending on the unknown function and its first derivative, on the set of functions that have fixed values ​​on the boundaries of a given interval. It reduces to a boundary value problem for the Euler equation. This is a second order ordinary differential equation. Thus, we have a boundary problem of exactly the same nature as the classical mathematical model of stationary heat transfer considered by us. Finally, the minimization of the integral functional that depends on the function of many variables and its first partial derivatives can be transformed to a second order partial differential equation. For example, the minimization of the Dirichlet integral, which in the simplest case is the integral of the sum of the squares of all first derivatives of the function under consideration, reduces to the Laplace equation, which consists in zeroing the sum of all the second partial derivatives of the given function. One determine an analogical equation at mathematical modeling of stationary heat transfer in the multidimensional case. The existence of a deep analogy between extremum problems and the theory of equations (see Table 6.1) is a weighty argument in favor of the expediency of considering the sequential method in the theory of optimal control.
Table 6.1. The analogy between extremum theory and equation theory 
	minimized object 
	point
	equation
	class of equation

	function of one variable
	number
	stationary condition
	algebraic equation

	function  
of many variables
	vector
	vector stationary

condition
	system

of algebraic equations

	integral functional 
(Lagrange problem)
	function  
of one variable 
	Euler 

equation 
	ordinary differential
equation

	integral functional 
(Dirichlet integral)
	function  
of many variables 
	Laplace 

equation
	partial differential equation


Consider a typical example of optimal control problem.

Example 6.1. The system is described by the Cauchy problem  
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that is the equation (6.1). The function u = u(t) is the control here. It belongs to the set of square integrable functions on the unit interval such that its values are not greater than 1 for all points. Thus, the set of admissible controls is described by the equality 
U = {u(L2(0,1) | |u(t)|(1, t((0,1)}.
The optimal control consists in finding a function u that minimizes the functional 
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on the set U, where 
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 is the solution of the system (6.2) for the control u.

This problem is easy enough. It is obviously that the given functional is non-negative. It can be equal to zero whenever the control and the state of the system are equal to zero. The zero control is admissible; and the corresponding solution х of the problem (6.2) is equal to zero too. Thus, this control is the unique solution of the considered optimal control problem. (
Remark 6.1. This optimal control problem has a very good property extra, which is called Tikhonov well-posedness (see Section 6.7). 
However, there exists extremum problems with qualitatively different properties.
6.2. Non-solvable optimal control problems
Consider, at first, an easiest problem of function minimization.

Example 6.2. Square function on the set of positive numbers. Consider the problem of minimization for the square function I(u) = u2 on the set U of positive numbers. Its solution does not exist, because of the absence of minimal positive number. However, the lower bound of the function I on the given set is equal to zero. This value does not realize on the elements of the set U, but there exists a minimizing sequence XE "последовательность:минимизирующая"  {uk} that is a sequence of elements of this set such that the corresponding values of the minimized function tend to its lower bound on the given set. For example, the numbers uk = 1/k, k = 1,2,… belongs to the set U; and the value I(uk) tends to zero. (
This result seems an analogue of divergent fundamental sequences of the non-complete spaces. The considered sequence is fundamental and divergent on the metric subspace U of the space of real numbers (see Caption 4). Therefore, we can suppose that these difficulties can be overcome by means of the completion technique.   
It is important that there exists elements of the given set such that the corresponding values of the minimized function are close enough to its lower bound although the minimum of this function does not exist. Therefore, we could try to find the minimizing sequences for determining an approximate solution of the problem. Besides, there is no sense in distinguishing the sequences with the same limit of the values of the minimized function. These sequences are equal in rights by extremum theory. For example, the, sequence {vk}, where vk = 1/k2, is minimizing and equivalent the sequence {uk}. These sequences can be identified by the factorization. Thus, we consider the equivalence classes of the sequences of the initial set. There are analogues of the elements of the completion of the metric spaces and real and p-adic numbers.
We considered the trivial function on the open set. However, we can obtain analogical results for an optimal control problem that is close enough to the problem of Example 6.1.
Example 6.3. Non-solvable optimal control problem. Consider the following optimal control problem. Suppose a control system is described by the Cauchy problem
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The control u =  u(t) here belongs to the set 

U = {u(L2(0,1) | |u(t)|(1, t((0,1)}.
We would like to find an element u of the set U that minimize on this set the functional 
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where 
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 is the solution of the problem (6.3) for the control u. This problem differs from the problem of Example 6.1 by the sigh before the square of the control under minimized functional.
It is obviously that the value under the given integral is not less than –1. Therefore, we have the inequality 
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 for all admissible control u. 

Consider the sequence of controls determined by the equality (see Figure 6.1):
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Figure 6.1. Sequence of controls.

Consider the corresponding sequence of the states хk of the problem (6.3) (see Figure 6.2). For 
2j/2k ( t < (2j+1)/2k  we have
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Analogically, for  (2j+1)/2k ( t < (2j+2)/2k   we get 
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Figure 6.2. Sequence of states.

Determine the following inequality (see Figure 6.3)

0 ( хk(t) ( 1/2k, t((0,1), k = 1,2, … . 

Then we have

[image: image13.wmf](

)

2

1

22

0

1

1

4

()1, 1,2,... .

kkk

k

Iuxudtk

-£

=-£-=

ò



[image: image14.wmf] 

 

1/2

k

 

 

u

k

 

 

t

 

t

k

 

 

 

S

t

 

x

k

(

t

) =

 

S

t

, 

t

k

 

£

 

t

 

<

 

t

k

 

+1/2

k

 

1/2

k

 

 

u

k

 

 

t

 

 

S

t

 

 

x

k

(

t

)  = 

1/2

k

 

–

 

S

t

, 

t

k

 

+1/2

k

 

Ј

 

t 

<

 

t

k

 

+1/

k

 

 

t

k

 

 

2

2

k

j

t

k

=

 


Figure. 6.3. The value of хk is not greater than 1/2k.

Pass to the limit as k((. We have I(uk) ( –1. Thus, value of the given functional for all admissible controls is not less than –1. However, there exists a sequence of admissible controls such that the corresponding sequence of functionals tends to –1. Therefore, the lower bound of this functional on the set of admissible control is –1; and the considered sequence is minimizing.  
Suppose there exists an admissible control u with value –1 of the functional. It is possible if both following inequalities hold 
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                                                      (6.4)

where х is the solution of the problem (6.3) for the control u. From the first equality (6.4) it follows that u is zero function. Putting it to the equation (6.4), determine that x is zero function too. However, this contradicts the second equality (6.4). Therefore, two equalities (6.4) cannot be true together. Thus, our supposition about the existence of the optimal control for the considered optimization problem is false. (
Thus, the optimal control problems can be insolvable. 

Remark 6.2. The simplicity and naturalness of this example suggests that the absence of optimal control is quite common.
Remark 6.3. The optimal control problems of Example 6.1 and Example 6.3 have the same state equations and the set of admissible controls. The only difference is the sign of one of the terms in the integrand of the minimized functional. This sign affects the extremely important property of functional, called convexity. Particularly, the functional I = I(u) on a linear space is called convex, if for all arguments u and v and all number ( from the unit interval the following inequality holds
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This condition has the easy geometric sense. The segment joining any two points on the curve lies no lower than the arc of the curve connecting these points (see Figure 6.4). If it always lies above this arc, then the function is called strictly convex. The functional is strictly convex, if the equality for the last relation can be realized for the cases ( = 0, ( = 1, and u = v only. One can prove the functional of the Example 6.1 is strictly convex (it has, in reality, stronger property,   see Section 6.7). However, the functional of Example 6.3 is non-convex.
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Figure 6.4. Convexity of functions.
Note that the optimal control problem has the sense for the case of its insolvability too, because there exists the lower bound of the considered functional on the set of admissible controls. Therefore, we can try to find an admissible control such that the corresponding value of the given functional is close enough to this lower bound. However, the classic optimization methods are not applicable here. We try to use here the sequential method. 

6.3. Sequential controls
Consider the problem of minimization of the functional I on the control set U. Suppose this functional is lower bounded. Therefore, there exists a lower bound of the given functional on the set U. Then there exists a sequence of elements of this set such that the corresponding sequence of the functional tends to this lower bound. We can try to find the minimizing sequences whether the task has a solution or not.
Consider a set F of the sequences on the set U such that the corresponding sequences of the functional U are convergent, i.e.    
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It will be the fundamental sequences of the admissible controls. Determine the relation ( such that the condition {uk}({vk} is true if the limits of these sequences are equal, i.e.
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It is obviously, that ( is the equivalence on the set U.

Definition 6.2. The elements of the factor-set  V = F/(  are called the sequential controls.  
The sequential controls are the equivalence classes of the fundamental sequences of usual controls. There are the analogues of the elements of the completion of the metric spaces (the equivalence classes of the fundamental sequences of the initial metric space) and real and p-adic numbers the equivalence classes of the fundamental sequences of rational numbers), see Table 6.2. This predetermines the further analysis.

Table 6.2. Sequential objects
	initial
object
	fundamental 
sequence {uk}
	equivalence
{uk}({vk}
	sequential 
object
	approximation 
of the sequential
object 

	element 
of metric space
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For all control u we can determine the stationary sequence {uk} with element u. The corresponding sequence of functionals {I(uk)} is stationary too, because all its elements is equal to I(u). Then this sequence is convergent, i.e. {uk}(F. Determine the operator А: U ( V that maps a control u to the sequential control Au that is equivalence class [uk], i.e. the set of all sequences of controls that are equivalent to {uk} (see Figure 6.5). All corresponding sequences of functionals tends to I(u). 
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Figure 6.5. Sequential extension of extremum problems.

Definition 6.3. The element of the set А(U) is called the regular sequential control, and the element of its complement in V is called the singular sequential control XE "управление:секвенциальное, сингулярное" .

Each regular sequential control contains a stationary sequence of usual controls. Therefore, this is associate with a concrete element of the set of admissible controls. 
Remark 6.4. There is no one-to-one correspondence between the sets of usual and regular sequential controls, because the values of the functional at the different controls can be equal (see also Section 6.6 and Section 6.7). 
The singular sequential control does not correspond to any elements of the set U. It is obviously that the convergence of the sequence of functionals that is numerical sequence can be realized for the case of divergent sequence of controls (see, in particular, the minimizing sequence of the considered example). Therefore, the sequential controls are usually singular as the typical real numbers are irrational. Moreover, the set of sequential controls is in some sense the completion of the given set of controls.

Now consider a problem of minimization of a functional on the set V of the sequential controls. Determine the functional

J(v)  =  lim I(vk) ({vk}(v, (v(V.

Each sequential control v is the set of all sequences of admissible control {vk} such that the sequences {I(vk)} has the same limit. This is the value of the functional J at the point v of the set V. Besides, the following equality holds

I(v) = J(Аv) (v(U.

Remark 6.5. We determine here the prolongation of the given functional from the set of usual controls to the set of sequential controls. This is the analogues of the prolongation of the operations, the metric, and the order (see Caption 4 and Caption 5).

Now we have the following solvable extremum problem.

Definition 6.4. The extended optimal control problem is the problem of minimization of the functional J on the set V. Its solution is called the sequentially optimal control. 
We have the following relation between usual and sequentially optimal control problems.
Theorem 6.1. The sequential control v is the sequentially optimal control if and only if each sequence {vk} that determines v is minimizing for the functional I on the set U, besides min J(V) = inf I(U).

Proof. Let {vk} be a sequence on the set U such that I(vk) ( inf I(U). Determine the sequential control v = [vk]. We have 

J(v) = lim I(vk) = inf I(U). 

If v is not sequentially optimal control, then there exists an element w from the set V such that J(w) < J(v). For any sequence {wk} from w we have
lim I(wk) = J(w) < J(v) = inf I(U).

Thus, there exists a sequence of the elements of the set U such that the corresponding values of the functional I tends to the lower bound of this functional on the set of admissible controls. From this contradiction is follows that our supposition about non-optimality of the sequential control v is false. 
Let now v is the sequentially optimal control, and {vk} is an arbitrary sequence of the class v. Suppose this is not minimizing sequence for the functional I on the set U. Then there exists a sequence {wk} of usual controls such that
lim I(wk)  <  lim I(vk).

Determine the sequential control w = [wk]. We obtain the inequality J(w)<J(v). Then v is not sequentially optimal control. Therefore, each sequence of the class v minimizes the functional I on the set U. This complete the proof of the Theorem 6.1. (
By Theorem 6.1, the sequentially optimal control is the equivalence class of all minimizing sequences for the functional I on the set U. The extended extremum problem is solvable if the initial functional is lower bounded on the set of admissible control. 
Theorem 6.2. The optimal control problem is solvable if and only if the corresponding sequentially optimal control is regular.

Proof. If there exists an optimal control u for the problem of minimization of the functional I on the set U, then we have the equality J(Аu) = I(u). Using Theorem 6.1, determine that the regular sequential control Au is sequentially optimal. If the sequentially optimal control is regular, then it is equal to Au for a usual control u, besides  I (u) = J(Аu). By Theorem 6.1, the value of the functional I at the point u is equal to its lower bound on the set U. Therefore, u is the solution of the initial optimal control problem. (
Remark 6.6. The properties of the sequential optimal control will be exacted in Section 6.6 and Section 6.7.
Remark 6.7. Solution of the extended control problem, i.e. the sequentially optimal control can be interpreted as a generalized solution of the initial optimal control problem. Then its classic solution is the usual optimal control. If the given problem is solvable, then the sequentially optimal control is regular. However, the sequentially optimal control, i.e. the generalized solution of the initial optimal control problem, can exist in the case of the absence of its classic solution. Therefore, we have the analogical relation between classic and generalized solutions of the extremum problem and the boundary problem for differential equations (see Caption 2). 

Remark 6.8. It seems more exact to interpreted the sequentially optimal control as the sequential solution of the given optimal control problem. Its analogue for the mathematical physics problem will be determine in Caption 8.

The optimal control problem is insolvable if the sequentially optimal control is singular. By typicality of the singularity of the sequential controls, the extremum problems of general form, as a rule, have no solution. In itself, this fact is well known. However, using of sequential controls gives him a natural explanation: regular sequential controls are too small to cover sequentially optimal controls for general problems. 
It is very important that the insolvable problem has a sense (see Figure 6.6). Particularly, we can try to find an approximate solution of the problem. This is an admissible control such that the corresponding value of the minimized functional is close enough to its lower bound on the set of admissible control. The transition from finding the nonexistent optimal control to finding the existing sequentially optimal control can give a basis for determining the minimizing sequences that generate it. Then the element of a minimizing sequence with large enough number can be chosen as the approximate solution of the given optimal control problem. The possibility of the approximation of the sequential object by usual objects (see Table 6.2) is the basis of the sequential method. Therefore, we determine the usual control (the approximate solution of the optimal control problem) as the result, just as practical work with an irrational number reduces to working with their rational approximation. The question arises, how can we in practice characterize sequentially optimal control and determine the minimizing sequence that generates it? Consider, at first, the easiest insolvable problem of function minimization (see Example 6.2).

6.4. Extension of the easiest extremum problem 
The existence of the solution of the extremum problem is necessary for using the classic optimization methods. Therefore, the analysis of insolvable optimal control problem is difficult enough. However, if we find an existing solution of the extended problem, then we can try to determine a minimizing sequence for the initial problem for the case of its insolvability too. This method seems very difficult, because it is necessary to find a sequential control that is the set of the sequences of the usual controls. However, we are working with real numbers that are the classes of sequences of rational numbers in Cantor's interpretation. 
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Figure 6.6. Analysis of the insolvable optimal control problem.

Determine, at first the sequential extension of the minimization problem for the square function on the set of positive numbers (see Example 6.2).
Example 6.4. Square function on the set of positive numbers. Consider the minimization problem of the square function I (u) = u2 on the set of positive numbers U. For any sequence {uk} of the set U the convergence of the sequence {I(uk)} is realized whenever the sequence {uk} is convergent. Then the set F consists of all sequences of positive numbers that are convergent on the set of real numbers. The sequences {uk} and {vk} of the set F are equivalent, if lim I(uk) = lim I(vk). This is true for the case of the equality of the limits for the considered sequences. Therefore, each this sequence {uk} determines the sequential control [uk] that is the set of all sequences of the set U with same limit as {uk}. Thus, the sequential controls are the set of equivalence classes of the sequences of positive numbers that are convergent on the set of real numbers. This is the completion of the space of positive numbers.
If the sequence {uk} has a limit u on the set of positive numbers, then it is equivalent the stationary sequence with element u. This sequential control is regular and can be identified to the usual control u that is a number. If a fundamental sequence of the set U is divergent that can be possible if it tends to zero, then the corresponding sequential control is singular. It can be identified to the number 0 that is not the element of the set U. Thus, the set of sequential controls V coincides up to isomorphism with the set of non-negative numbers, besides any positive number is regular, and the number 0 is singular.  

Determine the functional  
J(u) = lim I(uk)  = lim (uk)2 ({uk}(u
on the set V. By Theorem 6.1, each minimizing sequence determines a sequential control that minimizes the functional J on the set V. The sequentially optimal control exists here because of the boundedness of the function I on the set U. 

Determine necessary conditions of extremum for the extended problem. There are the relations that the solution of the extremum problem must satisfy. We use an algebraic property of the set U. The subset of a linear space is called convex, if for all its elements u and v the object (u +(1–()v belongs to this set for all number ( from the interval [0,1] (see Figure 6.7). 
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Figure 6.7. Convex set includes the segment connecting any of its points.

Suppose one has sequential controls v1 and v2 that are determined by the sequences {v1k} and {v2k} from U. By the convexity of the set U, the point 

wk = (v1k + (1–()v2k
belongs to this set for all (((0,1). Then the object (v1 + (1–()v2 is the element of the set V that is determined by the sequence {wk}. 

The following inequality holds
J [u +((v–u)]  –  J(u)  ( 0  (v(V, (((0,1).

It can be transformed to
lim [uk  + ((vk – uk)]2 –  lim (uk)2  ( 0  (v(V, (((0,1); {uk}(u, {vk}(v.

The numerical sequences {uk} and {vk} belong to the set F. Therefore, it have limits u' and v'. From the last inequality, it follows that
2(u'(v'–u') + (2(v' – u')2  ( 0.

Dividing by (  and passing to the limit as (( 0, we obtain the inequality 

u'(v'–u')(0.

This is true for all element v' that is the limit of the arbitrary convergent sequence of positive numbers. The set of these limits is the set of non-negative numbers. Then we get 

u'(v' – u') ( 0 (v'( 0.
This relation is called the variational inequality XE "неравенство:вариационное" . Its unique solution is u' = 0. Thus, the sequence {uk} that determines the sequentially optimal control tends to zero. By Theorem 6.1, this sequence is minimizing for the given extremum problem. (
This example illustrates the method of analysis for insolvable problems by the extension idea. The minimization problem of the square function on the set of positive numbers does not have any solutions. However, there exists the lower bound of this function on the given set. Then there exists an element of the set U such that the value of the considered function there is close enough to this lower bound. We can find it, if we determine a minimizing sequence. The direct using of necessary condition of extremum here is not applicable because of the absence of the solution for the given problem. However, we can find a minimizing sequence by the analysis of the extended extremum problem that is solvable. 
6.5. Extension of the optimal control problem
Apply the previous method for the analysis of the insolvable optimal control problem (see Example 6.3). We will use here results of the functional analysis. By the well-known Bolzano – Weierstrass theorem, for all bounded sequence of real numbers there exists a convergent subsequence. Its generalization is following Banach – Alaoglu theorem.  

Theorem 6.3. For all bounded with respect to the norm sequence of the Hilbert space there exists a weakly convergent subsequence. 

Remark 6.9. In reality, the Banach – Alaoglu theorem is a stronger assertion. However, Theorem 6.3 that is its weaker form will be sufficient for us. 
We consider the Sobolev space Н1(0,1) of square integrable with its first derivatives functions on the unit interval. This is the Hilbert space with scalar product  
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Consider the Rellich – Kondrashov theorem. 
Theorem 6.4. From the convergence хk ( х weakly in Н1(0,1), it follows that хk ( х strongly in L2(0,1).
Remark 6.10. In reality, the Rellich – Kondrashov is a stronger assertion. However, Theorem 6.4 will be sufficient for us. The sense of this theorem is obtaining the strongly convergence in the “weaker” space from the weakly convergence in the “stronger” space.
Note also the Schwartz inequality  
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i.e. the absolute value of the scalar product is not greater than the product of norms.
Remark 6.11. These assertions will be used also in Caption 8 for the analysis of the models of the stationary heat transfer phenomenon.  

Now we return to the consideration of Example 6.3. 
Example 6.5. Insolvable optimal control problem. We return to the consideration of the problem of finding a function u that minimizes the functional 
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on the set  

U = {u(L2(0,1) | |u(t)|(1, t((0,1)},
where х is the solution of the problem  
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Suppose the sequences {uk} and {vk} of the set U are equivalent with respect to the relation (, if the following conditions hold
                                                    (uk – vk) ( 0 in L2(0,1),   lim I(uk) = lim I(vk).                                         (6.5)

Consider the problem 
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Integrating, we get
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The value at the right-hand side of this equality can be interpreted as the scalar product of the function that equal to 1 everywhere and the function uk – vk of the space L2(0,t). Using Schwartz inequality, we have  
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with norm of the space L2(0,1). Using the first condition (6.5), we obtain the convergence zk ( 0 in L2(0,1). Let хk and уk be the state functions for the controls uk and vk. By the equality zk  = хk – уk, we get
|| хk || = || уk + zk || ( || уk || + || zk ||,  || yk || = || xk  –  zk || ( || xk || + || zk ||.

Then we obtain the inequality
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From the convergence ||zk || ( 0, it follows that 

lim || xk ||2  =  lim || уk ||2.

Using the analogical transformations, we have the equality
lim || uk || 2  =  lim || vk || 2.

Our optimality criterion is the difference between the squares of norms of the state function and the control. Therefore, the second condition (6.5) is the corollary of its first condition. Thus, the relation 
{uk}( {vk} is true whenever (uk – vk) ( 0 in L2(0,1). Then we determine the sequential control as the equivalence class of the sequences
[uk] = {{vk}( U | vk = uk + wk, wk ( 0 in L2(0,1)}.           

This object is regular if there exists a generating sequence {uk} that is convergent in the space L2(0,1) and singular if this sequence does not exist. The regular sequential control can be identified with the limit of the convergent generating sequence. 
Determine the functional 
J([uk])  = lim I(uk)

on the set V of sequential controls. The extended optimal control problem is the problem of minimization for the functional J on the set V. By the boundedness of the functional I on the set U, the extended problem is solvable.
Consider sequential controls u1 and u2. We have the equalities
ui  =  [uik]  =  {{vik} ( U | vik  =  uik + wik , wik ( 0  in L2(0,1)}, i = 1,2.        

Then we get
((u1k + w1k )+(1–()(u2k + w2k )( U, k = 1,2, … 

The sequence {wk}, determining by the equalities 

wk  = (w1k +(1–()w2k,  k = 1,2, … ,
is strongly convergent to zero in L2(0,1). Thus, the object 
u = [(u1k+(1–()u2k]

is the sequential control. Determine the linear space on the factor-set of sequences of L2(0,1) with equivalence (  by the standard method (see Caption 4). We get 
(u1 + (1–()u2 = [(u1k+(1–()u2k]  =  u.

Thus, the value at the right-hand side of this equality is the sequential control. Therefore, the set V is convex.  
Suppose u is the sequentially optimal control; and v is a sequential control that is determined by the equality
v = [vk] = {{vk + wk }(U | wk ( 0 в L2(0,1)}.         
Using the convexity of the set V, determine the inclusion of the sequential control (v + (1–()u to the set V. Then we have the inequality  
J[(v + (1–()u]  –  J(u) ( 0, (((0,1).
Now we get
                                                       lim I [uk  + ( (vk – uk)]  –  lim I(uk) ( 0.                                              (6.6)

Determine the value
I [uk  + ( (vk – uk)]  =  ||zk||2  – ||uk  + ( (vk – uk)||2,

where zk is the solution of the problem
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Denote again by хk and уk the state functions for the controls uk and vk. Determine the function
zk =  хk  + ( (уk – хk).

We have the equality  
I [uk  + ( (vk – uk)]  =  || xk|| 2 – || uk|| 2 + 2( 
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with scalar product of the space L2(0,1), where
(k  =  ||уk – хk||2  –||vk – uk||2.

Consider the problem
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that is called the adjoint system. Multiply the equality (6.7) by the difference yk – xk   and integrate the result. Using the formula of integration by part, we get  

( xk, yk – xk )  =  ( рk, vk – uk ).

Thus, we obtain
                               I[uk + ( (vk – uk)]  =  || xk ||2 – || uk ||2  + 2(( рk – uk, vk – uk )  + (2( k.                          (6.8)

The sequences {uk} and {vk} are bounded in the space L2(0,1) because of the boundedness of the set of admissible controls. Using the Banach – Alaoglu theorem, after extracting subsequences we have the convergence  uk ( u' weakly in L2(0,1), and vk ( v' weakly in L2(0,1). Find the solution of the state equation 
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Using the boundedness of the set of admissible controls, we have the boundedness of the sequence {xk} in L2(0,1). The sequence of derivatives 
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 is bounded in L2(0,1) by the state equation. Then the sequence  {xk} is bounded in Н1(0,1). Therefore we obtain the convergence хk ( х'  weakly in Н1(0,1) because of the Banach – Alaoglu theorem. By the equality
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 х' is the state function for the control u'. We prove also the convergence уk ( у' weakly in Н1(0,1), where у' is the state function for the control v'. By Rellich – Kondrashov theorem, we have the convergence хk ( х' and уk ( у' strongly in L2(0,1). Using the analogical transformations, we obtain рk ( р' in L2(0,1). 

Determine the inequality
|( рk, vk – uk ) – ( p',v' – u' )| ( |( рk – p',vk – uk )| + |( p', (vk – uk ) – (v' – u' ))| ( 
(|| рk – p'|| ||vk – uk || + |( p',vk – v')| + |(p',uk –u' )|.

Then we have the convergence 
(рk, vk – uk ) ( ( p',v' – u' )

From the equality (6.8), it follows that  

 lim I [uk  + ( (vk – uk) ]  =  ||x|| 2  –  lim ||uk|| 2  + 2( (p',v' – u') – 

– 2( lim (uk,vk)  + 2( lim||uk|| 2  + (2lim( k .    
Using the equality  

 lim I(uk)  =  ||x'||2  –  lim || uk ||2,

transform the inequality (6.6) 

(p',v' – u')  –  lim (uk,vk) + lim||uk|| 2 + (/2 lim(k  ( 0.

Passing to the limit as ((0 with using the boundedness of the sequence {(k}, we have the inequality  

                                                      ( p',v' – u')  +  lim|| uk ||2  (  lim (uk,vk).                                                   (6.9)             

This is true for all sequence {vk} of admissible controls. This condition is necessary for the sequential optimality of the sequential control u that is generated by the sequence {uk}.

By the Schwartz inequality and the definition of the set U, we get 

lim (uk, vk ) ( lim || uk || || vk || ( 1.

Then the condition (6.9) is true if the following inequality holds 
( p',v' – u')  +  lim || uk ||2  (  1.                              

The function v' is here the weak limit of the arbitrary sequence {vk} of admissible controls. The second term in the last inequality is not greater than 1. Then the last relation is true, at least, if the following equalities hold. 
р' = 0,  lim || uk || = 1.

Multiply the adjoint equation (6.7) by a smooth enough function (=((t) that is equal to zero for t = 0. After integration with using the formula of integration by parts we get 
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Passing to the limit, we have
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Then х'=0 because the function ( is arbitrary. After analogical transformations for the state equation we find u'=0. Thus, we obtain the following conditions for the sequence {uk} that generates the sequentially optimal control 
                                                         uk ( 0  weakly in L2(0,1),  || uk || ( 1.                                             (6.10)

Find the value of the functional J at the sequential control generating by the sequence {uk} that satisfies the condition (6.10). We have the convergence xk ( 0  strongly in L2(0,1). Hence, ||xk|| ( 0. Then we get
J([uk])  =  lim I(uk)  =  lim (|| xk ||2  – || uk ||2).

Passing to the limit with using the conditions (6.10), determine the convergence  J([uk]) ( –1. However, the minimum of the functional J on the set V is equal to the lower bound of the functional I on the set U that is equal to  –1. Thus, we describe, in reality, minimizing sequences of the initial optimal control problem. (
Remark 6.12. Each sequence {vk} that is equivalent to the sequence {uk} satisfying the conditions (6.10) is minimizing too. Indeed, each control vk here is determined by the equality vk = uk + wk, where wk ( 0 strongly in L2(0,1). Using (6.10), we have vk ( 0 weakly in L2(0,1). From the inequality
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it follows that the sequence {vk} satisfies the conditions (6.10) too. Therefore, this is the minimizing sequence. Note that the sequence of Example 6.3 satisfies the conditions (6.10).
Thus, we can determine the class of minimizing sequences. Therefore, we have many admissible controls such that the corresponding values of the minimized functional are close enough to its lower bound. 
Remark 6.13. We cannot guaranty that the necessary conditions of the sequential optimality does have another solutions. Besides, the solution of necessary conditions of optimality can be non-optimal. 

Remark 6.14. We could determine the variational inequality 
(р – u, v – u) ( 0 (v(U
as the necessary condition of optimality for the considered problem, where p is the solution of the adjoint system
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However, this optimality condition has no solution. Therefore, we cannot to use it for finding an approximate solution of the given optimal control problem.
Now we consider additional examples for the analysis of the properties of the sequentially optimal control.
6.6. Non-uniqueness of the optimal control
Consider the following optimal control problem.

Example 6.6. We have again the state system described by the Cauchy problem 
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The control  u =  u(t) belongs again to the set 

U = {u(L2(0,1) | |u(t)|(1, t((0,1)}.
We have the minimization problem for the functional  
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on the set U, where 
[image: image52.wmf]()
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 is the state function for the control u. This problem has the unique difference from the optimization problems of Example 6.1 and Example 6.3. This is the sigh of terms of integrands. However, this optimization problem has qualitatively different properties.
Using the definition of the set of admissible control, we have the inequality  
–1 ( u(t) ( 1,  t((0,1).

Determine the state function
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Integrating the previous inequality, we have
– t ( x(t) ( t,  t((0,1).

Then we get
0 ( [u(t)]2 ( 1,  0 ( [x(t)]2 ( t2.

Therefore, the following inequality holds
–(1+t2) ( –{[x(t)]2 + [u(t)]2} ( 0,  t((0,1).

After integration we prove that the value of the given functional at the arbitrary admissible control satisfies the inequality
–4/3 ( I ( 0.

The value –4/3 can be realized only if the squares of the state and of the control have their maximum possible values. Therefore, the considered optimal control problem has two solutions 

u1(t) = 1,  u2(t) = –1,  t((0,1).
Consider the operator A that maps the control u to the corresponding sequential control Au. This is the equivalence class of the sequences that is equivalent to the stationary sequence with element u. We have the equality
A(u1) = A(u2), 

because the value of the functional at both controls are same. Therefore, we have the unique sequential control for both usual optimal controls.

Determine now the sequence of controls {uk} with elements u1, u2, u1, u2, u1, u2, etc. The corresponding sequence of the functional values is stationary with element –4/3 that is the minimum of the given functional. Note that the divergent control sequence {uk} generates the regular sequential control. This sequential control is generated also by the stationary sequences with element 1 or –1. ( 
Remark 6.15. One can prove that the optimal control problem with strictly convex functional cannot to have more than one solution. The strictly convexity of the minimized functional is realized for Example 6.1, no for Example 6.6. 
The analogical results are true for the general case too. Particularly, we have the following assertion. 

Theorem 6.5. The sequentially optimal control is unique. If the initial optimal control problem has non-unique solution, then the corresponding sequentially optimal control can be generated by convergent and divergent sequences.   

We will know that non-trivial properties of the sequentially optimal control can be realized for the uniqueness of the optimal control even.

6.7. Tihonov well-posedness of the optimal control problems  

Consider another optimal control problem. 
Example 6.7. Let U be the set of square integrable functions 
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 a.e. on [0,1]. We have the problem of minimization of the functional
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where х=x(t) is the solution of the Cauchy problem 
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It is obviously that the given functional is non-negative. It can be equal to zero if the function x is equal to zero everywhere. The state function here is equal to zero for zero control only. Therefore, the given optimal control problem has the unique solution u0=0. Besides, the minimum of the functional on the set of admissible controls is equal to zero.
Consider the following sequence (see Figure 6.8)

uk(t)  =  sin (kt ,  k = 1,2, …  .                       

These functions are infinitely differentiable; and the values |uk(t)| are not greater than 1. Thus, we have the sequence of admissible controls. The corresponding state functions are determined by the formula (see Figure 6.9):
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Figure 6.8. Minimizing sequence for Example 6.7.
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Figure 6.9. The sequence of the states for the minimizing sequence.

We have the inequality
0 ( xk(t) ( 2/k( ,  t((0,1) ,  k = 1,2, … .

After integration we get
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Then the sequence {I(uk)} tends to zero that is the minimum of the given functional on the set of admissible control. Therefore, the considered control sequence is minimizing. Check the convergence of this sequence to the unique optimal control u0. We find the value 
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Thus, the optimal control u0 is not the limit of the minimizing sequence {uk}. However, this sequence determines the sequentially optimal control for the considered example. (
By Example 6.7, it is possible the absence of the convergence of the minimizing sequence to the optimal control for the case of the uniqueness of the optimal control even. 
Remark 6.16. One can prove that the considered minimizing sequence is divergent in the space L2(0,1). 

Definition 6.5. The optimal control problem is called well-posed by Tikhonov, if it is solvable, and each minimizing sequence tends to the optimal control.

Remark 6.17. One consider also the optimal control problems that are well-posed by Hadamard. However, this property is far from the considered problems. 

By Example 6.6, the optimal control problem with non-unique solutions is ill-posed by Tikhonov. The question arises, is there a problem that is well-posed by Tikhonov? 

Example 6.8. Return to Example 6.1. It is necessary to choose the control u from the set 
U = {u(L2(0,1) | |u(t)|(1, t((0,1)}
that minimize there the functional 
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where 
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 is the solution of the system
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We know that this problem has the unique u0 = 0; and the corresponding optimal state is х0 = 0.
Denote by {uk} an arbitrary minimizing sequence for the considered optimal control problem. Let {хk} be the corresponding sequence of state functions. Consider the control  

vk = (uk + (1–()u0
that belongs to the set U for all number ( from the interval [0,1]. Denote by yk the solution of the state system for the control vk. From the equalities
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it follows that
                                                                   yk = (xk + (1–()x0.                                                                  (6.11)

Find the value of the functional 
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We have the inequality  
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because of the convexity of the square function. Besides, we have the equality  
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Then we get
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                    (6.13)

Adding the relations (6.12) and (6.13), after integration we have the inequality
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               (6.14)                          

with norm of the space L2(0,1). From (6.14), it follows that
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The value of the left-hand of this inequality is non-negative, because the control u0 is optimal. Dividing by (, we get
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Pass to the limit here as k((. Then 
[image: image74.wmf]0

k

uu

®

 in L2(0,1), because the sequence {uk} is minimizing. Thus, each minimizing sequence tends to the optimal control. Therefore, this optimal control problem is well-posed by Tichonov. (
Remark 6.18. One can prove that the inequality (6.14) that is called the strongly convexity of the functional guaranties the well-posedness by Tikhonov of the problem for the general case too. 

Now we return to the general problem of this step of analysis. There are properties of the sequentially optimal control.

Example 6.9. Consider the extended optimal control problem for the Example 6.7. Suppose the control sequences {uk} and {vk} are equivalent with respect to the relation (, if its elements unlimitedly close with respect to the norm of L2(0,1) (see also Example 6.5). The control sequence {uk} with convergent correspondent sequence of functionals determines the sequential control 
[uk] = {{vk}( U | vk = uk + wk, wk ( 0  in L2(0,1)}.           

Determine the functional 
J([uk]) = lim I(uk) = lim || xk ||2
on the set V of sequential controls. Consider the minimization problem of the functional J on the set V. This is the extended optimal control problem. By the lower boundedness of the functional I on the set U, this problem has a unique solution. Suppose the sequential control u is sequentially optimal, and v is an arbitrary sequential control, i.e. 
v = [vk] = {{vk+wk}(U | wk ( 0 в L2(0,1)}.        

We have the inequality  
                                                     J [(v + (1–()u] – J(u) ( 0, ((((0,1)                                              (6.15)

that is the analogue of (6.6). By the definition of the functional J, we have
J(u) = lim || xk ||2,  J [(v + (1–()u] = lim || zk ||2.

The functions xk and zk are the states of the considered system for the controls uk and (vk + (1–()uk. Then we transform the inequality (6.15) to
                                                               lim || zk ||2 – lim || xk ||2 ( 0.                                                          (6.16)                   

Determine the equality  

zk = (yk + (1–()xk = xk +((yk – xk)                                                                  

that is the analogue of the formula (6.11). Then we get the equality
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with scalar product of the space L2(0,1).  

Using the idea of Example 6.5, determine the function pk from the system 
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This is the analogue of the problem (6.7). Multiply the equality  
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by the function  pk. Integrating it by the unit interval, after integration by part we obtain 
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Now the equality (6.17) can be transformed to
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Using the inequality (6.16), we get
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Passing to the limit as ((0, we have
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By the transformation of Example 6.5, after extracting of subsequences we obtain the convergences  
uk ( u' weakly in L2(0,1), vk ( v' weakly in L2(0,1), and рk ( р' strongly in L2(0,1). From the last inequality it follows that
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                                                           (6.18)

The function v' here is the weak limit of the arbitrary sequence of admissible controls. Using the arbitrariness of the function v', we prove that the inequality (6.18) is realized at least if р' = 0. Then we have (see Example 6.5) u' = 0. Thus, the sequential control that is generated by the control sequence with zero weak limit. The corresponding sequence of the functionals tends to zero too. Therefore, this sequence will be minimizing, because the criterion of optimality is non-negative. Thus, we found the class of minimizing sequences for the consider problem. (
Remark 6.19. One can prove that the minimizing sequence {uk} of Example 6.7 tends to zero weakly in L2(0,1). 

Remark 6.20. It is possible that other minimizing sequences exist for the considered optimal control problem.

The sequentially optimal control for the considered insolvable control problem optimal was be generated by the sequences of admissible control satisfying two conditions uk ( 0 weakly in L2(0,1) and ||uk|| ( 1. This sequential control is singular. Now the second condition is not applied. Therefore, the sequentially optimal control is generated by the sequences of admissible controls that tend to zero strongly. Hence, this is regular sequential control. By the way, zero control that is optimal for the considered example satisfies the variational inequality (6.18). This is necessary and sufficient condition of optimality now.  

Remark 6.21. The formal necessary condition of optimality for Example 6.3 is insolvable.  
Thus, the sequentially optimal control for the solvable optimal control problems that is ill-posed by Tikhonov is regular. However, this is generated by convergent and divergent minimizing sequences of usual  controls. Properties of the sequentially optimal controls for the different optimal control problems are described in Table 6.3.

Table 6.3. Properties of sequentially optimal controls
	property
of optimal control
problem 
	property
of minimized
functional
	example

of the integrand
	sequentially
optimal 
control
	generating
minimizing
sequence 

	well-posedness
by Tikhonov
	strongly
convexity
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	regular
	convergent

	single-valued
solvability
	strictly 
convexity 
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	regular
	convergent 

and divergent

	non-single-valued
solvability
	non-convexity
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	regular
	convergent 

and divergent

	non-solvability
	non-convexity
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Conclusion
1. The determination of mathematical models of physical phenomenon is connected with the procedure for passing to the limit.
2. The practical justification of the passage to the limit is based on the Cauchy criterion that is obtaining of the convergence of the fundamental sequence. 
3. The Cauchy criterion is true for the complete spaces only. 
4. The non-complete space can be extended to the complete one that consists of all equivalence classes of fundamental sequences of the initial space. 
5. Each element of the completion can be approximated by elements of the initial space.  
6. Using the completion technique that is the basis of the sequential method, one can extended the non-complete space of rational numbers to the complete spaces of real or p-adic numbers. 
7. One applies the sequential objects in the optimal control theory too.

8. The optimal control problems can be insolvable.
9. The objects of the analysis for the insolvable optimal control problems are the minimizing sequences.
10. The equivalence classes of the sequences of usual controls with convergent sequences of values the functionals are the sequential controls.

11. The extended optimal control problem is the minimization problem for the prolongation of the given functional to the set of the sequential controls.

12. The extended optimal control problem has the unique solution if the minimized functional is lower bounded on the set of admissible controls.

13. The minimum of the functional for the extended problem is equal to the lower bound of the initial functional.

14. An element of minimizing sequence can be chosen as an approximate solution of the initial optimal control problem. 
15. The sequentially optimal control for the optimal control problems with non-unique solution and ill-posed problem by Tikhonov can be generated by convergent and divergent sequences of usual controls. 
After consideration of the sequential objects of numbers theory and optimal control theory, we consider also the very important class of sequential objects. There are the distributions. Its theory has the extremely high importance for the mathematical physics problems (see Caption 2). Then we will come very close to our general problem that is the justification of the determination of mathematical models of physical phenomenon. 
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